Temperature-responsive nanomagnetic logic gates for cellular hyperthermia
authors Silva, RO; Pereira, RA; Silva, FM; Gaspar, VM; Ibarra, A; Millan, A; Sousa, FL; Mano, JF; Silva, NJO
nationality International
keywords IRON; FE3SE4; PHASE
abstract While a continuous monitoring of temperature at the micro-and nano-scales is clearly of interest in many contexts, in many others a yes or no answer to the question did the system locally exceed a certain temperature threshold?'' can be more accurate and useful. This is the case of hard-to-detect events, such as those where temperature fluctuations above a defined threshold are shorter than the typical integration time of micro/nanothermometers and systems where fluctuations are rare events in a wide time frame. Herein we present the synthesis of iron selenide magnetic nanoplatelets and their use as non-volatile logic gates recording the near infrared (NIR) dose that triggers a temperature increase above a critical temperature around 42 degrees C in prostate cancer cell cultures. This use is based on the bistable behavior shown by the nanoplatelets below a magnetic phase transition at a tunable temperature TC and on their photothermal response under NIR light. The obtained results indicate that the synthesized nanomagnets may be employed in the future as both local heaters and temperature monitoring tools in a wide range of contexts involving systems which, as cells, are temperature-sensitive around the tunable T-C.
issn 2051-6347
isbn 2051-6355
year published 2019
volume 6
issue 3
beginning page 524
ending page 530
digital object identifier (doi) 10.1039/c8mh01510d
web of science category Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
subject category Chemistry; Materials Science
unique article identifier WOS:000462637900019