Multiorgan histopathological changes in the juvenile seabreamSparus aurataas a biomarker for zinc oxide particles toxicity

resumo

Zinc oxide nanoparticles are widely used in some domains (cosmetics, pharmaceuticals optical devices, and agricultural field) due to their physical, optical, and antimicrobial properties. However, the release of ZnO-NPs into the environment may affect organisms like fish with potential consequences for human health. Histological approaches of the acute effects of these materials on fish are scarce; thus, the present study aimed to investigate the potential toxic effects of acute exposure to ZnO particles in marine environments, by assessing histological changes in the gills, liver, spleen, and muscle of gilthead seabream (Sparus aurata) juveniles. Thus, fish were exposed for 96 h, via water, to 1 mg L(-1)of ionic zinc and zinc oxide particles (1.1, 1.2, and 1.4 mu m of size). Histological examination revealed gills as the most affected organ, followed by liver, muscle, and spleen. In the gills, histopathological changes included hyperplasia of epithelial cells, fusion of the secondary lamellae, and lifting of the lamellar epithelium with edema. In the liver, lipid vacuolation of several degrees, necrosis of hepatic and pancreatic tissues, blood congestion in sinusoids and hepatoportal vessels, presence of cellular infiltrate, and melano-macrophages diffusion was found. Muscle showed degeneration, atrophy, thickening and necrosis of muscle fibers with edema between them, and presence of melano-macrophages in the muscle layer. Spleen was the less damaged organ, displaying congested blood, white pulp increase/rupture, and bigger and darker melano-macrophage aggregates in the splenic stroma. These results underline that the size of particles plays a determinant role in their potential pernicious effects. A short-term exposure caused major histopathological changes in relevant organs ofS. auratajuveniles, possibly affecting their function.

palavras-chave

SPARUS-AURATA; SUBLETHAL CONCENTRATION; COPPER NANOPARTICLES; ZNO NANOPARTICLES; FISH; GILLS; LIVER; LAGOON; CONTAMINATION; INDICATORS

categoria

Environmental Sciences & Ecology

autores

Beegam, A; Lopes, M; Fernandes, T; Jose, J; Barreto, A; Oliveira, M; Soares, AMVM; Trindade, T; Thomas, S; Pereira, ML

nossos autores

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".