Peculiarities of the Crystal Structure Evolution of BiFeO3-BaTiO3 Ceramics across Structural Phase Transitions

resumo

Evolution of the crystal structure of ceramics BiFeO3-BaTiO3 across the morphotropic phase boundary was analyzed using the results of macroscopic measuring techniques such as X-ray diffraction, differential scanning calorimetry, and differential thermal analysis, as well as the data obtained by local scale methods of scanning probe microscopy. The obtained results allowed to specify the concentration and temperature regions of the single phase and phase coexistent regions as well as to clarify a modification of the structural parameters across the rhombohedral-cubic phase boundary. The structural data show unexpected strengthening of structural distortion specific for the rhombohedral phase, which occurs upon dopant concentration and temperature-driven phase transitions to the cubic phase. The obtained results point to the non-monotonous character of the phase evolution, which is specific for metastable phases. The compounds with metastable structural state are characterized by enhanced sensitivity to external stimuli, which significantly expands the perspectives of their particular use.

palavras-chave

DOPED BIFEO3 CERAMICS; MAGNETIC-PROPERTIES

categoria

Science & Technology - Other Topics; Materials Science

autores

Karpinsky, DV; Silibin, MV; Trukhanov, SV; Trukhanov, AV; Zhaludkevich, AL; Latushka, SI; Zhaludkevich, DV; Khomchenko, VA; Alikin, DO; Abramov, AS; Maniecki, T; Maniukiewicz, W; Wolff, M; Heitmann, V; Kholkin, AL

nossos autores

agradecimentos

This work was supported by the RSF (project #18-19-00307). Investigations performed at the Center for Physics of the University of Coimbra were supported by Fundacao para a Ciencia e a Tecnologia (project UID/04564/2020). M.V.S. acknowledges Russian academic excellence project 5-100 for Sechenov University. Part of work done at the University of Aveiro was developed within the scope of the project CICECO-Aveiro Institute of Materials, refs. UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the FCT/MEC.

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".