resumo
Recent advances in the extraction and purification of decellularized extracellular matrix (dECM) obtained from healthy or malignant tissues open new avenues for engineering physiomimetic 3D in vitro tumor models, which closely recapitulate key biomolecular hallmarks and the dynamic cancer cell-ECM interactions in the tumor microenvironment. We review current and upcoming methodologies for chemical modification of dECM-based biomaterials and advanced bioprocessing into organotypic 3D solid tumor models. A comprehensive review of disruptive advances and shortcomings of exploring dECM-based biomaterials for recapitulating the native tumor-supporting matrix is also provided. We hope to drive the discussion on how 3D dECM testing platforms can be leveraged for generating microphysiological tumor surrogates that generate more robust and predictive data on therapeutic bioperformance.
palavras-chave
CELL-DERIVED MATRICES; MECHANICAL-PROPERTIES; CROSS-LINKING; LIVER MATRIX; CANCER CELLS; TISSUE; COLLAGEN; SCAFFOLD; CULTURE; PHENOTYPE
categoria
Biotechnology & Applied Microbiology
autores
Ferreira, LP; Gaspar, VM; Mano, JF
nossos autores
agradecimentos
This work was supported by the Programa Operacional Competitividade e Internacionalizacao (POCI), in the component FEDER, and by national funds (OE) through FCT/MCTES, in the scope of the projects PANGEIA (PTDC/BTM-SAL/30503/2017). V. Gaspar acknowledges funding in the form of a Junior Researcher Contract under the scope of the project PANGEIA (PTDC/BTM-SAL/30503/2017). The authors acknowledge the financial support by the Portuguese Foundation for Science and Technology (FCT) through a doctoral grant (SFRH/BD/141718/2018, Luis Ferreira). This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 and UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES.