resumo
Solubility, bioavailability, permeation, polymorphism, and stability concerns associated to solid-state pharmaceuticals demand for effective solutions. To overcome some of these drawbacks, ionic liquids (ILs) have been investigated as solvents, reagents, and anti-solvents in the synthesis and crystallization of active pharmaceutical ingredients (APIs), as solvents, co-solvents and emulsifiers in drug formulations, as pharmaceuticals (API-ILs) aiming liquid therapeutics, and in the development and/or improvement of drug-delivery-based systems. The present review focuses on the use of ILs in the pharmaceutical field, covering their multiple applications from pharmaceutical synthesis to drug delivery. The most relevant research conducted up to date is presented and discussed, together with a critical analysis of the most significant IL-based strategies in order to improve the performance of therapeutics and drug delivery systems.
palavras-chave
WATER-SOLUBLE DRUGS; TRANSDERMAL DELIVERY; AQUEOUS-SOLUTIONS; SKIN PERMEATION; 1-METHYL-3-OCTYLIMIDAZOLIUM CHLORIDE; POLYMORPHIC TRANSFORMATION; CRYSTALLIZATION CONTROL; ANTIBACTERIAL ACTIVITY; ANTIOXIDANT PROPERTIES; POTENTIAL CARRIERS
categoria
Biochemistry & Molecular Biology; Chemistry
autores
Pedro, SN; Freire, CSR; Silvestre, AJD; Freire, MG
nossos autores
Grupos
G4 - Materiais Renováveis e Economia Circular
G5 - Materiais Biomiméticos, Biológicos e Vivos
agradecimentos
This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. This work was financially supported by the project IonCytDevice (POCI-01-0145-FEDER-031106, PTCD/BTA-BTA/31106/2017) funded by FEDER, through COMPETE2020-Programa Operacional Competitividade e Internacionalizacao (POCI), and by national funds (OE), through FCT/MCTE). S. N. Pedro acknowledges the PhD grant SFRH/BD/132584/2017.