abstract
Solubility, bioavailability, permeation, polymorphism, and stability concerns associated to solid-state pharmaceuticals demand for effective solutions. To overcome some of these drawbacks, ionic liquids (ILs) have been investigated as solvents, reagents, and anti-solvents in the synthesis and crystallization of active pharmaceutical ingredients (APIs), as solvents, co-solvents and emulsifiers in drug formulations, as pharmaceuticals (API-ILs) aiming liquid therapeutics, and in the development and/or improvement of drug-delivery-based systems. The present review focuses on the use of ILs in the pharmaceutical field, covering their multiple applications from pharmaceutical synthesis to drug delivery. The most relevant research conducted up to date is presented and discussed, together with a critical analysis of the most significant IL-based strategies in order to improve the performance of therapeutics and drug delivery systems.
keywords
WATER-SOLUBLE DRUGS; TRANSDERMAL DELIVERY; AQUEOUS-SOLUTIONS; SKIN PERMEATION; 1-METHYL-3-OCTYLIMIDAZOLIUM CHLORIDE; POLYMORPHIC TRANSFORMATION; CRYSTALLIZATION CONTROL; ANTIBACTERIAL ACTIVITY; ANTIOXIDANT PROPERTIES; POTENTIAL CARRIERS
subject category
Biochemistry & Molecular Biology; Chemistry
authors
Pedro, SN; Freire, CSR; Silvestre, AJD; Freire, MG
our authors
Groups
G4 - Renewable Materials and Circular Economy
G5 - Biomimetic, Biological and Living Materials
acknowledgements
This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. This work was financially supported by the project IonCytDevice (POCI-01-0145-FEDER-031106, PTCD/BTA-BTA/31106/2017) funded by FEDER, through COMPETE2020-Programa Operacional Competitividade e Internacionalizacao (POCI), and by national funds (OE), through FCT/MCTE). S. N. Pedro acknowledges the PhD grant SFRH/BD/132584/2017.