Thin film annealing: A crucial parameter in controlling electrode properties of solid oxide fuel cells


The least surface electrode resistance is a key in maturing low-temperature solid oxide fuel cells (SOFCs). The current article addresses the effect of crystallinity on electrode kinetics of La0.6Sr0.4Co0.2Fe0.8O3-delta using annealing in 650-1000 degrees C range. Increased polaron activity and hence conductivity due to in-situ crystallization in 273-380 degrees C range, with highest conductivity of 9.62 Scm(-1), is evidenced the strain induced in low temperature annealed electrodes were higher sourcing the driving force for diffusion of carriers in thin films. To understand this effect comprehensively, the thin film surfaces were studied for degree of crystallinity, elemental atomic distribution, in- and cross-plane electrical performances.




Chemistry; Physics


Jamale, AP; Jadhav, LD

nossos autores


This work was funded by projects CO2ZERO (POCI-01-0145-FEDER-016654-PTDC/CTM-CER/6732/2014) , MOCO3- (M-ERA.NET2 2016-MOCO3-0009/2016) , and CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through FCT (Fundacao para a Ciencia e a Tecnologia) /MCTES, and when applicable co-financed by FEDER under the COMPETE 2020 Program. Specific support (AJ) provided by national funds (OE) , through FCT, IP, in the scope of the framework contract foreseen in the numbers 4, 5, and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19.

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".