Hydrogen-Terminated Two-Dimensional Germanane/Silicane Alloys as Self-Powered Photodetectors and Sensors

resumo

2D monoelementalmaterials, particularly germanene andsilicene(the single layer of germanium and silicon), which are the base materialsfor modern electronic devices demonstrated tremendous attraction fortheir 2D layer structure along with the tuneable electronics and opticalband gap. The major shortcoming of synthesized thermodynamically veryunstable layered germanene and silicene with their inclination towardoxidation was overcome by topochemical deintercalation of a Zintlphase (CaGe2, CaGe1.5Si0.5, and CaGeSi)in a protic environment. Theexfoliated Ge-H, Ge0.75Si0.25H, and Ge0.5Si0.5H were successfully synthesized and employedas the active layer for photoelectrochemical photodetectors, whichshowed broad response (420-940 nm), unprecedented responsivity,and detectivity on the order of 168 mu A W-1 and 3.45 x 10(8) cm Hz(1/2) W-1, respectively. The sensing capability of exfoliated germanane andsilicane composites was explored using electrochemical impedance spectroscopywith ultrafast response and recovery time of less than 1 s. Thesepositive findings serve as the application of exfoliated germaneneand silicene composites and can pave a new path to practical applicationsin efficient future devices.

palavras-chave

GERMANENE; SILICENE; GEH

categoria

Science & Technology - Other Topics; Materials Science

autores

Roy, PK; Hartman, T; Sturala, J; Luxa, J; Melle-Franco, M; Sofer, Z

nossos autores

agradecimentos

Project was supported by the Czech Science Foundation (GACR no. 19-26910X). In addition, support through the project IF/00894/2015, the advanced computing project 021.09622.CPCA granting access to the Navigator cluster at LCA-UC, and within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC) is gratefully acknowledged.

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".