Localization of excitation in InGaN epilayers

resumo

Energy scalability of the excitation-emission spectra of InGaN epilayers, quantum wells and light-emitting diodes provided indirect evidence for a fundamental common cause of the remarkable optical properties of this commercially important semiconductor alloy. Phase segregation on the nanoscale ( accidental quantum dot formation) has generally been accepted as the mechanism of the spectral energy scaling ( K. P. O'Donnell, R. W. Martin and P. G. Middleton, Phys. Rev. Lett. 82 237 ( 1999)). Recently, however, the downsizing of the InN bandgap, from 2 to about 1 eV, has prompted a re-examination of the observations. Here, we present new structural evidence of InGaN nanostructure, obtained from a comparative analysis of Ga and In K-edge EXAFS ( extended X-ray absorption fine structure) of a wide range of InxGa1-xN epilayer samples. The mean In-Ga and Ga-In next-nearest-neighbour ( NNN) separations are found to be unequal in length for InN-poor ( 0.1 < x < 0.4) samples. The degree of inequality increases with decreasing InN fraction, x, and therefore correlates with luminescence efficiency in this range of alloy composition. We propose that the breakdown of In/Ga randomicity in InGaN alloys is associated with efficient excitation-emission in blue-green light-emitting devices. Although non-randomicity may lead to a weak quasi-localization of excitation, through the suppression of energy back-transfer, the issue of strong exciton localization in InGaN is not directly addressed by these results.

palavras-chave

ABSORPTION FINE-STRUCTURE; RANDOM SOLID-SOLUTIONS; COMPOSITION DEPENDENCE; EXCITON LOCALIZATION; GAN EPILAYERS; STOKES SHIFT; LUMINESCENCE; LAYERS; MBE; EMISSION

categoria

Materials Science; Metallurgy & Metallurgical Engineering; Physics

autores

Kachkanov, V; O'Donnell, KP; Pereira, S; Martin, RW

nossos autores

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".