DFT study on the reaction of NO oxidation on a stepped gold surface

resumo

The NO oxidation either with atomic or molecular oxygen on the stepped Au(3 2 1) surface was studied by means of OFT calculations (GGA/PW91). A periodic supercell approach was used to model the gold stepped surface and the kinetic profiles of the reactions were determined with the dimer approach. It was found that the co-adsorption of NO and O occurs preferentially with these species interacting with top and hollow sites nearby the steps, respectively. In the case of co-adsorbed NO and O(2) species, the most stable configuration on the surface is a ONOO* intermediate. The NO(2) product adsorbs strongly on the Au(3 2 1) surface (E(ads) = -1.10 eV) also nearby the step. The reaction of NO oxidation by atomic oxygen has an energy cost of 0.07 eV, whereas moderate-low energy barriers of 0.21 and 0.25 eV were computed for the reaction with molecular oxygen, via the ONOO* intermediate, following Elay-Rideal (ER) or Langmuir-Hinshelwood (LH) mechanisms, respectively. The reaction route following the ER mechanism is energetically more favorable since it is unnecessary to overcome the very high barriers (similar to 1 eV) needed for NO(2) desorption and for dissociation of molecular oxygen in the cases of NO reaction via LH mechanism and NO oxidation with atomic oxygen, respectively. (C) 2010 Elsevier B.V. All rights reserved.

palavras-chave

TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; NITRIC-OXIDE; CO OXIDATION; CARBON-MONOXIDE; ELECTROCATALYTIC OXIDATION; AU(321) SURFACE; ADSORPTION; CATALYST; DISSOCIATION

categoria

Chemistry; Environmental Sciences & Ecology

autores

Fajin, JLC; Cordeiro, MNDS; Gomes, JRB

nossos autores

agradecimentos

Thanks are due to Fundacao para a Ciencia e Tecnologia (FCT), Lisbon, Portugal and to FEDER for financial support to CIQUP, CICECO and to REQUIMTE. Programme Ciencia 2007 is also acknowledged. JLCF acknowledges FCT for the grant SFRH/BPD/27167/2006.

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".