Development, performance and stability of sulfur-free, macrovoid-free BSCF capillaries for high temperature oxygen separation from air

resumo

Capture and storage of CO(2) (CCS) from fossil-fuel power plants is vital in order to counteract a pending anthropogenic global warming. High temperature oxygen transport perovskite membranes can fulfill an important role in the separation of oxygen from air needed in the oxy-fuel technologies for CCS. In this study we present the development, performance and stability of gastight, macrovoid-free and sulfur-free Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-delta) (BSCF) mixed conductor capillary membranes prepared by phase-inversion spinning and sintering. A sulfur-free phase-inversion polymer was chosen in order to obtain a phase-pure BSCF crystal phase. Special attention was given to the polymer solution and ceramic spinning suspension in order to avoid macrovoids and achieve gastight membranes. The sulfur-free BSCF capillaries showed an average 4-point bending strength of 64 +/- 8 MPa and a maximum oxygen flux of similar to 5.3 Nml/(cm(2) min) at 950 degrees C for an argon sweep flow rate of 125 Nml/min. The comparison of the performance of sulfur-free and sulfur-containing BSCF capillaries with similar dimensions revealed a profound impact of the sulfur contamination on both the oxygen flux and the activation energy of the overall oxygen transport mechanism. Both long-term oxygen permeation at different temperatures and post-operation analysis of a sulfur-free BSCF capillary were performed and discussed. (C) 2011 Elsevier B.V. All rights reserved.

palavras-chave

HOLLOW-FIBER MEMBRANES; PEROVSKITE MEMBRANES; CO2 CAPTURE; CARBON-DIOXIDE; PERMEATION; FABRICATION; DECOMPOSITION; GENERATION; CONVERSION; PART

categoria

Engineering; Polymer Science

autores

Buysse, C; Kovalevsky, A; Snijkers, F; Buekenhoudt, A; Mullens, S; Luyten, J; Kretzschmar, J; Lenaerts, S

nossos autores

agradecimentos

The authors want to express their thanks to the VITO staff for their continuous support, especially B. Molenberghs, W. Doyen, H. Beckers, R. Kemps, M. Mertens, M. Schoeters and H. Chen. C. Buysse thankfully acknowledges a PhD scholarship provided by VITO and the University of Antwerp. This work is performed in the framework of the German Helmholtz Alliance Project

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".