Highlights during the development of electrochemical engineering

abstract

Over the last century, electrochemical engineering has contributed significantly to societal progress by enabling development of industrial processes for manufacturing chemicals, such as chlorine and the Nylon precursor adiponitrile, as well as a wide range of metals including aluminium and zinc. In 2011, ca. 17 M tonne Cu p.a. was electro-refined to 99.99%+ purity required by electrical and electronic engineering applications, such as for electrodepositing with exquisite resolution multi-layer inter-connections in microprocessors. Surface engineering is widely practised industrially e.g. to protect steels against corrosion e.g. by electroplating nickel or using more recent novel self-healing coatings. Complex shapes of hard alloys that are difficult to machine can be fabricated by selective dissolution in electrochemical machining processes. Electric fields can be used to drive desalination of brackish water for urban supplies and irrigation by electrodialysis with ion-permeable membranes; such fields can also be used in electrokinetic soil remediation processes. Rising concerns about the consequences of CO2 emissions has led to the rapidly increasing development and deployment of renewable energy systems, the intermittency of which can be mitigated by energy storage in e.g. redox flow batteries for stationary storage and novel lithium batteries with increased specific energies for powering electric vehicles, or when economically viable, in electrolyser-fuel cells. The interface between electrochemical technology and biotechnology is also developing rapidly, with applications such as microbial fuel cells. Some of these applications are reviewed, the challenges assessed and current trends elucidated in the very active area of Chemical Engineering bordering with material science and electrochemistry. (C) 2013 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

keywords

PEM FUEL-CELLS; ACTIVE CORROSION PROTECTION; HIGH-TEMPERATURE ELECTROLYSIS; DOPED DIAMOND ELECTRODES; ANTICORROSION COATINGS; MATHEMATICAL-MODEL; ENERGY-STORAGE; MEMBRANE; PROMOTION; OXIDATION

subject category

Engineering

authors

Bebelis, S; Bouzek, K; Cornell, A; Ferreira, MGS; Kelsall, GH; Lapicque, F; de Leon, CP; Rodrigo, MA; Walsh, FC

our authors

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".