Anomalous C-V response correlated to relaxation processes in TiO2 thin film based-metal-insulator-metal capacitor: Effect of titanium and oxygen defects

abstract

Capacitance-voltage (C-V) and capacitance-frequency (C-f) measurements are performed on atomic layer deposited TiO2 thin films with top and bottom Au and Pt electrodes, respectively, over a large temperature and frequency range. A sharp capacitance peak/discontinuity (C-V anomalous) is observed in the C-V characteristics at various temperatures and voltages. It is demonstrated that this phenomenon is directly associated with oxygen vacancies. The C-V peak irreversibility and dissymmetry at the reversal dc voltage are attributed to difference between the Schottky contacts at the metal/TiO2 interfaces. Dielectric analyses reveal two relaxation processes with degeneration of the activation energy. The low trap level of 0.60-0.65 eV is associated with the first ionized oxygen vacancy at low temperature, while the deep trap level of 1.05 eV is associated to the second ionized oxygen vacancy at high temperature. The DC conductivity of the films exhibits a transition temperature at 200 degrees C, suggesting a transition from a conduction regime governed by ionized oxygen vacancies to one governed by interstitial Ti3+ ions. Both the C-V anomalous and relaxation processes in TiO2 arise from oxygen vacancies, while the conduction mechanism at high temperature is governed by interstitial titanium ions. (C) 2015 AIP Publishing LLC.

keywords

ATOMIC LAYER DEPOSITION; ELECTRICAL-CONDUCTIVITY; RUTILE TIO2-X; DIOXIDE; SINGLE; ISOPROPOXIDE; TEMPERATURE

subject category

Physics

authors

Kahouli, A; Marichy, C; Sylvestre, A; Pinna, N

our authors

Groups

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".