abstract
Partition behavior of adenosine and guanine mononucleotides was examined in aqueous dextran-polyethylene glycol (PEG) and PEG-sodium sulfate two-phase systems. The partition coefficients for each series of mononucleotides were analyzed as a functions of the number of phosphate groups and found to be dependent on the nature of nucleic base and on the type of ATPS utilized. It was concluded that an average contribution of a phosphate group into logarithm of partition coefficient of a mononucleotide cannot be used to estimate the difference between the electrostatic properties of the coexisting phases of ATPS. The data obtained in this study were considered together with those for other organic compounds and proteins reported previously, and the linear interrelationship between logarithms of partition coefficients in dextran-PEG, PEG-Na2SO4 and PEG-Na2SO4-0.215 M NaCl (all in 0.01 M Na- or K/Na-phosphate buffer, pH 7.4 or 6.8) was established. Similar relationship was found for the previously reported data for proteins in Dex-PEG, PEG-600-Na2SO4, and PEG-8000-Na2SO4 ATPS. It is suggested that the linear relationships of the kind established in ATPS may be observed for biological properties of compounds as well. (C) 2016 Elsevier B.V. All rights reserved.
keywords
SOLUTE-SOLVENT INTERACTIONS; SALT ADDITIVES
subject category
Biochemistry & Molecular Biology; Chemistry
authors
Ferreira, LA; da Silva, NR; Wlodarczyk, SR; Loureiro, JA; Madeira, PP; Teixeira, JA; Uversky, VN; Zaslaysky, BY
our authors
acknowledgements
Nuno da Silva acknowledges the financial support by Fundacao para a Ciencia e a Tecnologia (FCT) of the Portuguese's Ministry for Science, Technology and Higher Education, in the framework of the Operational Program COMPETE (PTDC/EQU-FTT/120332/2010).; Pedro P. Madeira acknowledges the financial support in part provided by (i) FCT/MEC and FEDER through COMPETE 2020 (Project UID/EQU/50020/2013-POCI-01-0145-FEDER-006984) and (ii) QREN, FCT, ON2 and FEDER, through COMPETE (Project NORTE-07-0124-FEDER-0000011).