Chitosan and polyethylene glycol based membranes with antibacterial properties for tissue regeneration

abstract

The prevention of microbial infections associated with implantable medical devices and superficial wounds represents one of the main research strategies in the field of biomaterials. The present study reports on the development of composite membranes of Chitosan (CS)-Polyethylene glycol (PEG) matrix, incorporating particles of biphasic calcium phosphate (BCP), zinc oxide (ZnO) and copper oxide (CuO). The properties that are relevant for intended applications in tissue regeneration and antibacterial coatings of implants were assessed. It was found that the addition of 1% (w/w - relative to the mass of CS) of each metal oxide promoted satisfactory bacteriostatic activity and exhibited no cytotoxic effects towards the Vero cell line. The formation of bonds between the CS/PEG matrix and ionic species from the powders enhanced the cross-linking degree and mechanical properties of composite membranes in comparison to the non-doped membrane with the same polymer matrix (CS/PEG = 70/30%). A gradual degradation of the composite membranes over the immersion time in simulated body fluid (SBF) was accompanied by a continuous surface deposition of uniform apatite layer.

keywords

OXIDE NANOPARTICLES; CUO NANOPARTICLES; GREEN SYNTHESIS; TCP SCAFFOLDS; BETA-TCP; ZINC; NANOCOMPOSITE; BIOMATERIALS; FABRICATION; INFECTION

subject category

Materials Science

authors

Pereira, IC; Duarte, AS; Neto, AS; Ferreira, JMF

our authors

acknowledgements

This work was supported by the European Regional Development Fund (FEDER) through the COMPETE, by the Portuguese Government through the Portuguese Foundation for Science and Technology (FCT), in the scope of the projects UID/CTM/50011/2013 (Aveiro Institute of Materials, CICECO, www.ciceco.ua.pt). Thanks are also due for the financial support to CESAM (UID/AMB/50017 - POCI-01-0145-FEDER-007638), to FCT/MCTES through national funds (PIDDAC), and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020.

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".