Supramolecular Presentation of Hyaluronan onto Model Surfaces for Studying the Behavior of Cancer Stem Cells

abstract

The supramolecular presentation of extracellular matrix components on surfaces provides a platform for the investigation and control of cell behavior. Hyaluronan (HA) is one of the main components of the extracellular environment and has been shown to play an important role in different cancers and their progression. However, current methods of HA immobilization often require its chemical modification. Herein, a peptide-based self-assembled monolayer (SAM) is used as an anchor to immobilize unmodified HA on a bare gold surface, as demonstrated by the quartz crystal microbalance with dissipation monitoring. Peptide-HA surfaces show increased roughness and greater hydrophobicity when compared to poly-D-lysine/HA surfaces, as measured by atomic force microscopy and water contact angle, respectively. Additionally, the peptide SAM can be micro-contact printed and used to restrict the presentation of HA to specific regions, thereby creating HA patterned surfaces to examine cell behavior. When used for cell culture, these surfaces result in altered adhesion and migration of LUC4 head and neck squamous cell carcinoma cells. These biomimetic surfaces can provide insights into the role of HA in cancer and other diseases and be used as a platform for the development of cell sorting devices.

keywords

PROTEIN ADSORPTION; HYDROPHOBIC SURFACES; INTEGRIN BINDING; ACID; EXPRESSION; HEAD; CHEMISTRY; OLIGOSACCHARIDES; POLYSACCHARIDE; SPECIFICITY

subject category

Materials Science

authors

Pang, XQ; O'Malley, C; Borges, J; Rahman, MM; Collis, DWP; Mano, JF; Mackenzie, IC; Azevedo, HS

our authors

acknowledgements

C.O'M. thanks The Queen Mary Institute of Bioengineering and the Engineering and Physical Sciences Research Council for financial support through a Ph.D. studentship (Award number 1502316). J.B. gratefully acknowledges the financial support by Fundacao para a Ciencia e a Tecnologia (FCT), I.P., through individual contract (CEECIND/03202/2017). This work was also funded by national funds (OE), through FCT, I.P., in the scope of the framework contract foreseen in the numbers 4, 5, and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. The authors also acknowledge the financial support from the EU-funded project SuprHApolymers (PCIG14-GA-2013-631871). The authors also thank Mr. Jotham Selvarajah from the School of Physics and Astronomy at Queen Mary University of London for coating the gold patterns on glass slides.

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".