Effect of ferroelectric domains on electric properties of single layer graphene

abstract

Ferroelectric materials with tailored domain structures are promising smart substrates providing additional degrees of functionality for the graphene-based devices. We demonstrate the effect of periodical domain structure in lithium niobate substrate on the electrical properties of graphene studied by Raman spectroscopy. The spatial variations of the charge carriers and Fermi levels in graphene corresponding to oppositely polarized domains have been elucidated. The observed effects are supposed to be driven by the lateral component of electric field at the surface related to the gradient of spontaneous polarization. The five orders of magnitude decay of charge density in graphene is due to screening of depolarization field.

keywords

STRONG PIEZOELECTRICITY; RAMAN

subject category

Materials Science; Physics

authors

Zelenovskii, P; Romanyuk, K; Vidyasagar, R; Akhmatkhanov, A; Zhao, P; Shur, VY; Kholkin, AL

our authors

acknowledgements

The authors are grateful to the Russian Foundation for Basic Research (grant No 16-29-14050-ofr-m) and Government of the Russian Federation (Act 211, Agreement 02.A03.21.0006) for the financial support. VS and AA are grateful for financial support of the Ministry of Science and Higher Education of the Russian Federation (state tasks 3.4993.2017/6.7 and 3.4973.2017/7.8). RV thanks Fundacao para a Ciencia e Tecnologia (FCT) for the Grant SFRH/BPD/104887/2014. KR thanks FCT for the grant SFRH/BPD/88362/2012. The authors from University of Aveiro acknowledge CICECO-Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2019) financed by the national funds through the FCT/MEC. The equipment of Ural Center for Shared Use Modern Nanotechnologies UrFU was used.

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".