Additive Manufacturing-Enabled Architected Nanocomposite Lattices Coated with Plasmonic Nanoparticles for Water Pollutants Detection

abstract

Novel low-cost materials to uptake and detect vestigial amounts of pesticides are highly desirable for water quality monitoring. Herein, are demonstrated, for the first time, surface-enhanced Raman scattering (SERS) sensors enabled via additively manufactured lattices coated with plasmonic nanoparticles (NPs) for detecting pesticides in real water samples. The architected lattices comprising polypropylene (PP) and multiwall carbon nanotubes (MWCNTs) are realized via fused filament fabrication (FFF). In the first stage, the SERS performance of the PP/MWCNT filaments coated with distinct metallic NPs (Ag NPs and Au NPs) is evaluated using methylene blue (MB) as molecular probe. Thereafter, distinctly architected hybrid SERS sensors with periodic porous and fully dense geometries are investigated as adsorbents to uptake MB from aqueous solutions and subsequent detection using SERS. The spatial distribution of MB and Ag NPs on the FFF-printed lattices is accomplished by SERS imaging. The best hybrid composite is used as SERS probing system to detect low amounts of pesticides (thiram and paraquat) and offers a detection limit of 100 nm for both pesticides. As a proof-of-concept, FFF-enabled test strips are used to detect in loco paraquat molecules spiked on real water samples (Estuary Aveiro water and tap water) using a portable Raman spectrometer.

keywords

SURFACE-ENHANCED RAMAN; METHYLENE-BLUE; CARBON NANOTUBES; AQUEOUS-SOLUTION; SERS; PESTICIDES; SCATTERING; SPECTROSCOPY; POLYPROPYLENE; ADSORPTION

subject category

Materials Science; Polymer Science

authors

Fateixa, S; Landauer, M; Schneider, J; Kumar, S; Böhm, R

our authors

acknowledgements

This work was supported by the UK Engineering and Physical Sciences Research Council (grant EP/R513222/1), and the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020, and LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC). S.F. thanks FCT for her research contract (REF-069-88-ARH-2018), which is funded by national funds (OE) through FCT-Fundacao para a Ciencia e a Tecnologia, I.P., in the scope of the framework contract foreseen in the numbers 4, 5, and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. The authors additionally acknowledge the support given by the European Commission via the COST Action CA19118 "High-performance carbon-based composites with smart properties for advanced sensing applications" (EsSENce).

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".