abstract
Aqueous biphasic systems (ABS) formed by copolymers and ionic liquids (ILs) have demonstrated to be effective separation platforms, but there is still a gap on the complete understanding of the molecular-level mechanisms ruling the two-phase formation for this type of systems. This work addresses the determination of the liquid-liquid equilibrium of ABS composed of cholinium-based salts or cholinium-based ILs and the triblock copolymer Pluronic PE6200 (PL6200). It is demonstrated that PL6200 can form ABS with all investigated cholinium-based salts or ILs, contrarily to most poly(ethylene)glycol polymers, which is due to the presence of hydrophobic propylene oxide (PO) blocks. From the phase diagrams behavior and IL/salt anions properties, it is shown that the formation of ABS with cholinium-based salts is ruled by the anions polar surface and ability to be hydrated, whereas in systems comprising ILs van der Waals interactions between the copolymer and the IL cannot be discarded. The partition of a series of alkaloids in these systems, namely caffeine, nicotine, theophylline, and theobromine, was additionally appraised. It is shown that caffeine, theophylline, and theobromine preferentially migrate to the more hydrophobic PL6200-rich phase, and that their partition depends on the water content in the respective phase, being ruled by the phases' hydrophobicity. On the other hand, nicotine, with the most prominent hydrophobic character amongst the studied alkaloids, preferentially migrates to the salt- or ILrich phase, in which interactions occurring between this alkaloid and the IL/salt cannot be discarded. The ABS formed by cholinium dihydrogenphosphate is the most selective system identified to separate nicotine from the remaining alkaloids, giving some insights into their investigation as separation platforms for alkaloids from natural extracts.
keywords
POLYPROPYLENE GLYCOL; POLYETHYLENE-GLYCOL; BLOCK-COPOLYMERS; 2-PHASE SYSTEMS; EXTRACTION; PURIFICATION; POLYMERS; SEPARATION; STABILITY; PROTEINS
subject category
Engineering
authors
Dimitrijevic, A; Tavares, APM; Jocic, A; Maric, S; Trtic-Petrovic, T; Gadzuric, S; Freire, MG
our authors
acknowledgements
The authors would like to thank Ministry of Education, Science and Technological Development of Republic of Serbia for financial support. This work was developed within the scope of the project CICECOAveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES. A.P.M. Tavares acknowledges FCT for the Research Contract and Exploratory Project IF/01634/2015.