Phase Transitions in the Metastable Perovskite Multiferroics BiCrO3 and BiCr0.9Sc0.1O3: A Comparative Study
authors Cardoso, JP; Delmonte, D; Gilioli, E; Fertman, EL; Fedorchenko, AV; Shvartsman, VV; Pauksta, V; Grigalaitis, R; Banys, J; Khalyavin, DD; Vieira, JM; Salak, AN
nationality International
abstract The temperature behavior of the crystal structure as well as dielectric and magnetic properties of the perovskite bismuth chromate ceramics with the 10 mol % Cr3+-to-Sc3+ substitution were studied and compared with those of the unmodified compound. Using a high-pressure synthesis, BiCrO3 and BiCr0.9Sc0.1O3 were obtained as metastable perovskite phases which are monoclinic C2/c with the root 6a(p) x root 2a(p) x root 6a(p) superstructure (where a(p) is the primitive perovskite unit-cell parameter) under ambient conditions. At room temperature, the unit cell volume of BiCr0.9Sc0.1O3 is similar to 1.3% larger than that of BiCrO3. Both perovskites undergo a reversible structural transition into a nonpolar GdFeO3-type phase (orthorhombic Pnma, root 2a(p) x 2a(p) x root 2a(p)) in the temperature ranges of 410-420 K (BiCrO3) and 470-520 K (BiCr0.9Sc0.1O3) with a relative jump of the primitive perovskite unit cell volume of about -1.6 and -2.0%, respectively. Temperature dependences of the complex dielectric permittivity demonstrate anomalies in the phase transition ranges. The Pnma-to-C2/c crossover in BiCrO3 is accompanied by a decrease in the direct current (dc) conductivity, while in BiCr0.9Sc0.1O3 the conductivity increases. The onset of an antiferromagnetic order in BiCr0.9Sc0.1O3 is observed at the Neel temperature (TN) of about 85 K as compared with T-N = 110 K in BiCrO3. In contrast to BiCrO3, which exhibits a spin reorientation at T-sr similar to 72 K, no such a transition occurs in BiCr0.9Sc0.1O3.
issn 0020-1669
isbn 1520-510X
year published 2020
volume 59
issue 13
beginning page 8727
ending page 8735
digital object identifier (doi) 10.1021/acs.inorgchem.0c00338
web of science category Chemistry, Inorganic & Nuclear
subject category Chemistry
unique article identifier WOS:000548456300013
  ciceco authors
  impact metrics
journal analysis (jcr 2019):
journal impact factor 4.825
5 year journal impact factor 4.501
category normalized journal impact factor percentile 92.222
dimensions (citation analysis):
altmetrics (social interaction):