Magnetic hyperthermia with epsilon-Fe(2)O(3)nanoparticles

abstract

Biocompatibility restrictions have limited the use of magnetic nanoparticles for magnetic hyperthermia therapy to iron oxides, namely magnetite (Fe3O4) and maghemite (gamma-Fe2O3). However, there is yet another magnetic iron oxide phase that has not been considered so far, in spite of its unique magnetic properties: epsilon-Fe2O3. Indeed, whereas Fe(3)O(4)and gamma-Fe(2)O(3)have a relatively low magnetic coercivity, epsilon-Fe(2)O(3)exhibits a giant coercivity. In this report, the heating power of epsilon-Fe(2)O(3)nanoparticles in comparison with gamma-Fe(2)O(3)nanoparticles of similar size (similar to 20 nm) was measured in a wide range of field frequencies and amplitudes, in uncoated and polymer-coated samples. It was found that epsilon-Fe(2)O(3)nanoparticles primarily heat in the low-frequency regime (20-100 kHz) in media whose viscosity is similar to that of cell cytoplasm. In contrast, gamma-Fe(2)O(3)nanoparticles heat more effectively in the high frequency range (400-900 kHz). Cell culture experiments exhibited no toxicity in a wide range of nanoparticle concentrations and a high internalization rate. In conclusion, the performance of epsilon-Fe(2)O(3)nanoparticles is slightly inferior to that of gamma-Fe(2)O(3)nanoparticles in human magnetic hyperthermia applications. However, these epsilon-Fe(2)O(3)nanoparticles open the way for switchable magnetic heating owing to their distinct response to frequency.

keywords

CELL PLASMA-MEMBRANE; GIANT COERCIVE FIELD; CYTOPLASMIC VISCOSITY; HEAT-TRANSFER; NANOPARTICLES; DOMAIN; LIMITATIONS; DIFFUSION; APOPTOSIS; SOLUTE

subject category

Chemistry

authors

Gu, YY; Yoshikiyo, M; Namai, A; Bonvin, D; Martinez, A; Pinol, R; Tellez, P; Silva, NJO; Ahrentorp, F; Johansson, C; Marco-Brualla, J; Moreno-Loshuertos, R; Fernandez-Silva, P; Cui, YW; Ohkoshi, S; Millan, A

Groups

acknowledgements

This work was supported by European Union's Horizon 2020 FET Open program [Grants no: 801305 and 829162] Spanish Ministry of Science Innovation and Universities [Grant no: PGC2018_095795_B_I00] and Diputacion General de Aragon [E11/17R]. Authors would like to acknowledge the use of Servicio General de Apoyo a la Investigacion-SAI, Universidad de Zaragoza. This work was developed within the scope of the projects CoolPoint P2020-PTDC-CTMNAN-4511-2014 and CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the FCT/MEC and co-financed by FEDER under the PT2020 Partnership Agreement.We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI). We thank Sara Maccagnano-Zacher, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a dra. of this manuscript.

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".