Protein-olive oil-in-water nanoemulsions as encapsulation materials for curcumin acting as anticancer agent towards MDA-MB-231 cells

abstract

The sustainable cellular delivery of the pleiotropic drug curcumin encounters drawbacks related to its fast autoxidation at the physiological pH, cytotoxicity of delivery vehicles and poor cellular uptake. A biomaterial compatible with curcumin and with the appropriate structure to allow the correct curcumin encapsulation considering its poor solubility in water, while maintaining its stability for a safe release was developed. In this work, the biomaterial developed started by the preparation of an oil-in-water nanoemulsion using with a cytocompatible copolymer (Pluronic F 127) coated with a positively charged protein (gelatin), designed as G-Cur-NE, to mitigate the cytotoxicity issue of curcumin. These G-Cur-NE showed excellent capacity to stabilize curcumin, to increase its bio-accessibility, while allowing to arrest its autoxidation during its successful application as an anticancer agent proved by the disintegration of MDA-MB-231 breast cancer cells as a proof of concept.

keywords

ANTIOXIDANT ACTIVITY; MICROEMULSIONS; NANOPARTICLES

subject category

Multidisciplinary Sciences

authors

Bharmoria, P; Bisht, M; Gomes, MC; Martins, M; Neves, MC; Mano, JF; Bdikin, I; Coutinho, JAP; Ventura, SPM

our authors

acknowledgements

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES. Marcia C. Neves acknowledges FCT, I.P. for the research contract CEECIND/00383/2017 under the CEEC Individual 2017. MCG and JFM acknowledge the funding from the European Research Council (ERC) for project ATLAS (ERC-2014-ADG-669858 Image acquisition was performed in the LiM facility of iBiMED, a node of PPBI (Portuguese Platform of BioImaging) with grant agreement number POCI-01-0145-FEDER-022122. Margarida Martins acknowledges FCT for her doctoral grant SFRH/BD/122220/2016.

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".