abstract
We report the controlled synthesis of thin films of prototypical zirconium metal-organic frameworks [Zr6O4(OH)(4)(benzene-1,4-dicarboxylate-2-X)(6)] (X = H, UiO-66 and X = NH2, UiO-66-NH2) over the external surface of shaped carbonized substrates (spheres and textile fabrics) using a layer-by-layer method. The resulting composite materials contain metal-organic framework (MOF) crystals homogeneously distributed over the external surface of the porous shaped bodies, which are able to capture an organo-phosphate nerve agent simulant (diisopropylfluorophosphate, DIFP) in competition with moisture (very fast) and hydrolyze the P-F bond (slow). This behavior confers the composite material self-cleaning properties, which are useful for blocking secondary emission problems of classical protective equipment based on activated carbon.
keywords
DESTRUCTION; HYDROLYSIS; ADSORPTION
subject category
Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
authors
Gil-San-Millan, R; Delgado, P; Lopez-Maya, E; Martin-Romera, JD; Barea, E; Navarro, JAR
Groups
acknowledgements
This research was funded by the Directorate for Planning, Technology, and Innovation (SDG PLATIN) from the Directorate General of Armaments and Material (DGAM) of the Spanish Ministry of Defense, COINCIDENTE Program exp. 1003219007500-NBQD2. The authors also acknowledge EU Feder funding, MINECO (CTQ2017-84692-R and PID2020-113608RB-I00), Universidad de Granada (Plan Propio de Investigacio ' n), and Junta de Andalucia (P18-RT612). Funding for open access charge: Universidad de Granada/CBUA.