abstract
Although Bioactive Glasses (BGs) have been progressively optimized, their preparation often still involves the use of toxic reagents and high calcination temperatures to remove organic solvents. In the present work, these synthesis related drawbacks were overcome by treating the ashes from the Equisetum hyemale plant in an ethanol/water solution to develop a bioactive composite [glass/carbon (BG-Carb)]. The BG-Carb was characterized by scanning electron microscopy, and transmission electron microscopy; and its chemical composition was assessed by inductively coupled plasma-optical emission spectroscopy. Brunauer-Emmett-Teller gas adsorption analysis showed a specific surface area of 121 m(2) g(-1). The formation of hydroxyapatite (HA) surface layer in vitro was confirmed by Fourier-transform infrared spectroscopy analysis before and after immersion in simulated body fluid (SBF) solution. The Rietveld refinement of the XRD patterns and selected area electron diffraction analyses confirmed HA in the sample even before immersing it in SBF solution. However, stronger evidences of the presence of HA were observed after immersion in SBF solution due to the surface mineralization. The BG-Carb samples showed no cytotoxicity on MC3T3-E1 cells and osteo-differentiation capacity similar to the positive control. Altogether, the BG-Carb material data reveals a promising plant waste-based candidate for hard and soft tissue engineering.
keywords
ACTIVATED CARBON; GLASS SCAFFOLDS; SILICA; IMPLANTS; SOL; DNA
subject category
Science & Technology - Other Topics
authors
Silva, RMFDE; Diniz, IMA; Gomes, NA; Silva, GJB; Ferreira, JMD; de Freitas , RL; Freitas, ETF; Martins, DA; Domingues, RZ; Andrade, AL
Groups
Projects
CICECO - Aveiro Institute of Materials (UIDB/50011/2020)
CICECO - Aveiro Institute of Materials (UIDP/50011/2020)
Associated Laboratory CICECO-Aveiro Institute of Materials (LA/P/0006/2020)
Collaboratory for Emerging Technologies, CoLab (EMERGING TECHNOLOGIES)
acknowledgements
This work was supported by CNPq, FAPEMIG, CAPES. This work was also developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020, financed by national funds through the FCT/MCTES (PIDDAC). The Laboratorio de Analises cromatograficas e espectroscopicas, LACE, IFPR - Umuarama, Brazil.