Designing type V deep eutectic solvents with antimalarial pharmaceutical ingredients

abstract

This work studies the formation of deep eutectic solvents formed by one active pharmaceutical ingredient (quinine, pyrimethamine, or 2-phenylimidazopyridine) and a second component potentially acting as an excipient (betaine, choline chloride, tetramethylammonium chloride, thymol, menthol, gallic acid, vanillin, acetovanillone, 4-hydroxybenzaldehyde, syringaldehyde, propyl gallate, propylparaben, or butylated hydroxyanisole), aiming to address challenges regarding drug solubility, bioavailability, and permeability. A preliminary screening was carried out using the thermodynamic model COSMO-RS, narrowing down the search to three promising excipients (thymol, propyl gallate, and butylated hydroxyanisole). Nine solid–liquid equilibrium (SLE) phase diagrams were experimentally measured combining the three model drugs with the screened excipients, and using a combination of a visual melting method and differential scanning calorimetry. Negative deviations from thermodynamic ideality were observed in all nine systems. Furthermore, a total of four new cocrystals were found, with powder and single crystal X-ray diffraction techniques being employed to verify their unique diffraction patterns. In the thermodynamic modelling of the SLE diagrams, two COSMO-RS parametrizations (TZVP and TZVPD-FINE) were also applied, though neither consistently delivered a better description over the other.

authors

Teixeira, G; Brandão, P; Lobo Ferreira, AIMC; Abranches, DO; Santos, LMNBF; Ferreira, O; Coutinho, JAP

our authors

acknowledgements

This work was developed within the scope of the project CICECO - Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020, and LA/P/0006/2020, CIQUP, Centro de Investigação em Química da Universidade do Porto (UIDB/00081/ 2020); IMS, Institute of Molecular Sciences (LA/P/0056/2020), and CIMO, UIDB/00690/2020 (DOI: 10.54499/UIDB/00690/2020) and UIDP/00690/2020 (DOI: 10.54499/UIDP/00690/2020); and SusTEC, LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020), financed by national funds through the Portuguese Foundation for Science and Technology FCT/MCTES (PIDDAC). AIMCLF is financed by national funds through the FCT-I.P., in the framework of the execution of the program contract provided in paragraphs 4, 5, and 6 of art. 23 of Law no. 57/2016 of 29 August, as amended by Law no. 57/2017 of 19 July. G.T. thanks FCT for his Ph.D. grant (UI/BD/151114/2021).

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".