Effect of experimental variables on the inertization of galvanic sludges in clay-based ceramics

abstract

The incorporation of several industrial wastes in ceramic matrixes had been attempted as an effective low expense technique for the fixation of metallic species in usable products or simply to reduce the residue volume for further disposal. However, the dominant mechanism of the inertization process and the relevant influent parameters are still unknown, mostly due to the complexity of the systems. This work reports the effect of several processing parameters such as the mixing time, the calcination temperature and duration, the relative amount of sludge, and the physical aspect of the sample (powdered or pressed pellets) on the fixing level of relevant species (SiO2, SO42-, Zn, Ni, Ca, Cu, Cr) by leaching in different media (aqueous, acetate, and citrate). Statistical tools were used to define the relevance of each experimental variable on the inertization process of the used galvanic sludge. The relative amount of sludge in the mixture, the calcination temperature and the agglomeration state of the sample were found to be the most influent parameters of :the inertization process. The incipient reaction between sludge and ceramic matrix components points out for the dominance of a macro-encapsulation mechanism. (C) 2003 Elsevier B.V. All rights reserved.

keywords

PRODUCTS; CHROMIUM; WASTES

subject category

Engineering; Environmental Sciences & Ecology

authors

Magalhaes, JM; Silva, JE; Castro, FP; Labrincha, JA

our authors

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".