Carboxylate anions binding and sensing by a novel tetraazamacrocycle containing ferrocene as receptor


A tetraazamacrocycle containing ferrocene moieties has been synthesized and characterized. The tetraprotonated form of this compound was evaluated as a receptor (R) for anion recognition of several substrates (S), Cl-, PF6-, HSO4-, H2PO4- and carboxylates, such as p-nitrobenzoate (p-nbz(-)), phthalate (ph(2-)), isophthalate (iph(2-)) and dipicolinate (dipic(2-)). H-1 NMR titrations in CD3OD indicated that this receptor is not suitable for recognizing HSO4- and H2PO4-, but weakly binds p-nbz(-), and strongly interacts with ph(2-), dipic(2-), and iph(2-) anions forming 1 : 2 assembled species. The largest beta(2) binding constant was determined for ph(2-), followed by dipic(2-) and finally iph(2-). The effect of the anionic substrates on the electron-transfer process of the ferrocene units of R was evaluated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in methanol solution and 0.1 mol dm(-3) (CH3)(4)NCl as the supporting electrolyte. Titrations of the receptor were undertaken by addition of anion solutions in their tetrabutylammonium or tetramethylammonium forms. The protonated ligand exhibits a reversible voltammogram, which shifts cathodically in the presence of the substrates. The data revealed kinetic constraints in the formation of the receptor/substrate entity for dipic(2-), ph(2-) and iph(2-) anions, but not for p-nbz(-). In spite of the slow kinetics of assembled species formation with the ph(2-) substrate, this anion provides the largest redox-response when the supramolecular entity is formed, followed by dipic(2-), iph(2-) and finally p-nbz(-) anions. This trend is in agreement with the H-1 NMR results and the values of the binding constants. Single crystal X-ray structures of the receptor with PF6-, ph(2-), iph(2-) and p-nbz(-) were carried out and showed that supermolecules with a RS2 stoichiometry are formed with the first three anions, but RS4 with p-nbz(-). In all cases the binding occurs outside the macrocyclic cavity via N-H center dot center dot center dot O=C hydrogen bonds for carboxylate anions and N - H center dot center dot center dot F hydrogen bonds for the PF6- anion, which is in agreement with the solution results. The macrocyclic framework adopts different conformations in order to interact with each substrate having Fe center dot center dot center dot Fe intramolecular distances ranging from 10.125(14) to 12.783(15) angstrom.



subject category



Cui, XL; Delgado, R; Carapuca, HM; Drew, MGB; Felix, V

our authors

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".