An in vitro biological and anti-bacterial study on a sol-gel derived silver-incorporated bioglass system

abstract

Objectives. The purpose of this study was to evaluate the in vitro antibacterial and biological activity of silver-incorporated bioactive glass system SiO2-CaO-P2O5-Ag2O (AgBG). The bacteriostatic and bactericidal proper-ties of this new quaternary glass system along with the ternary sol-gel glass system SiO2-CaO-P2O5 (BG) have been studied using Escherichia coli as a test micro-organism. The AGBG system thus appears to be a promising material for dental applications, since similar effects might be produced on a film of bacteria and mucous that grows on the teeth. Methods. The SiO2-CaO-P2O5-Ag2O and SiO2-CaO-P2O5 glass systems were synthesized by the sol-gel technique and characterized for their physicho-chemical properties. The antibacterial activity and biological properties were evaluated by determining the minimum inhibitory concentrations (MICs). Release of Ag+ into the culture medium was measured by inductively coupled plasma (ICP) analysis. Results. The in vitro antibacterial action of the SiO2-CaO-P2O5-Ag2O was compared with that of its ternary counterpart glass system. The concentrations of Ag-bioglass, in the range of 0.02-0.20 mg of Ag-bioglass per millilitre of culture medium, were found to inhibit the growth of these bacteria. The Ag-bioglass not only acts bacteriostatically but it also elicited a rapid bactericidal action. A complete bactericidal effect was elicited in the early stages of the incubation at Ag-bioglass concentration of 20mg/ml and the ternary glass system had no effect on bacterial growth or viability. The antibacterial action of Ag-bioglass was exclusively attributed to the leaching of Ag+ ions from the glass matrix. Significance. One of the major advantages of incorporating silver ions into a gel glass system is that the porous glass matrix can allow for controlled sustained delivery of the antibacterial agent to dental material, used even under anaerobic conditions such as deep in the periodontal pocket. This glass system also provides long-term action required for systems which are constantly at risk of microbial contamination. (C) 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

keywords

BIOACTIVE GLASS; SURFACE; TISSUE; COMPOSITES; BACTERIA; IONS; CELL

subject category

Dentistry, Oral Surgery & Medicine; Materials Science

authors

Balamurugan, A; Balossier, G; Laurent-Maquin, D; Pina, S; Rebelo, AHS; Faure, J; Ferreira, JMF

our authors

acknowledgements

The work was supported by CICECO, University of Aveiro, Portugal. The authors would like to acknowledge the support and technical assistance of L. Wortham and S. Bouthors INSERM ERM0203, Centre for Bioactive Materials and Tissue Engineering, University of Reims, France.

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".