Self-Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes


Graphene nanoribbons (GNR) were generated in ethanol solution by unzipping pyrrolidine-functionalized carbon nanotubes under mild conditions. Evaporation of the solvent resulted in regular few-layer stacks of graphene nanoribbons observed by transmission electron microscopy (TEM) and X-ray diffraction. The experimental interlayer distance (0.49-0.56nm) was confirmed by computer modelling (0.51nm). Computer modelling showed that the large interlayer spacing (compared with graphite) is due to the presence of the functional groups and depends on their concentration. Stacked nanoribbons were observed to redissolve upon solvent addition. This preparation method could allow the fine-tuning of the interlayer distances by controlling the number and/or the nature of the chemical groups in between the graphene layers.






Cunha, E; Proenca, MF; Costa, F; Fernandes, AJ; Ferro, MAC; Lopes, PE; Gonzalez-Debs, M; Melle-Franco, M; Deepak, FL; Paiva, MC

nossos autores



The authors are thankful to the Institute of Nanostructures, Nanomodelling and Nanofabrication (Associated Laboratory of the Fundacao para a Ciencia e a Tecnologia (FCT), Portugal) for funding of the project Grafitran (PEst-C/CTM/LA0025/2011). M. Melle-Franco acknowledges support from FCT through the Ciencia 2008 program and grants PEst-OE/EEI/UI0752/2014 and CONC-REEQ. E. Cunha gratefully acknowledges the FCT also for the Ph.D. grant SFRH/BD/87214/2012.

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".