Volumetric and acoustical properties of aqueous mixtures of N-methyl-2-hydroxyethylammonium propionate at T = (298.15 to 333.15) K
authors Li, Y; Figueiredo, EJP; Santos, MJSF; Santos, JB; Talavera-Prieto, NMC; Carvalho, PJ; Ferreira, AGM; Mattedi, S
nationality International
journal JOURNAL OF CHEMICAL THERMODYNAMICS
author keywords Ionic liquid; Density; Jouyban-Acree model; Pade approximant; Speed of sound; Apparent molar volume; Apparent molar isentropic compressibility
keywords PARTIAL MOLAR VOLUMES; TEMPERATURE IONIC LIQUIDS; TERNARY-SYSTEM (ETHANOL; BINARY SOLVENT MIXTURES; CHLORIDE PLUS WATER; PHYSICAL-PROPERTIES; 1-BUTYL-3-METHYLIMIDAZOLIUM TETRAFLUOROBORATE; 1-ETHYL-3-METHYLIMIDAZOLIUM ETHYLSULFATE; THERMODYNAMIC PROPERTIES; ADIABATIC COMPRESSIBILITIES
abstract The speed of sound in the ionic liquid (IL) N-methyl-2-hydroxyethylammonium propionate (m2HEAPr) was measured at atmospheric pressure, and over the range of temperatures T = (293.15 to 343.15) K. The speed of sound and density were also measured for aqueous mixtures of the ionic liquid throughout the entire concentration range at temperatures T = (298.15 to 333.15) K and atmospheric pressure. The excess molar volume, excess isentropic compressibility, excess speed of sound, apparent molar volume, and isentropic apparent molar compressibility were calculated from the values of the experimental density and speed of sound. The results were analyzed and are discussed from the point of view of structural changes in the aqueous medium. All the above mentioned properties were correlated with selected analytical functions. The Jouyban-Acree model was used to correlate the density of the mixtures studied with the temperature. The model accuracy was evaluated by calculating the absolute average deviation (AAD) for the correlation, which is 0.4%. The speed of sound of the m2HEAPr was predicted with the Wu et al. model with a maximum deviation of 2%. The molar compressibility of m2HEAPr and their aqueous mixtures was calculated from the Wada's model. To the authors' knowledge, this is the first time this model is applied to these systems. The results demonstrate that the molar compressibility calculated from Wada's model is almost a linear function of mole fraction and can be considered as temperature independent for a fixed mole fraction over the whole composition range. (C) 2015 Elsevier Ltd. All rights reserved.
publisher ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
issn 0021-9614
year published 2015
volume 88
beginning page 44
ending page 60
digital object identifier (doi) 10.1016/j.jct.2015.04.005
web of science category Thermodynamics; Chemistry, Physical
subject category Thermodynamics; Chemistry
unique article identifier WOS:000355153800007
  ciceco authors
  impact metrics
journal analysis (jcr 2019):
journal impact factor 2.888
5 year journal impact factor 2.5
category normalized journal impact factor percentile 64.563
dimensions (citation analysis):
altmetrics (social interaction):



 


Apoio

1suponsers_list_ciceco.jpg