Thermodynamic stability of lead-free alkali niobate and tantalate perovskites

resumo

Lead-free niobates and tantalates currently form some of the most promising groups of ferroelectrics, piezoelectrics and related materials, with important applications for the next generation of lead-free sensors, actuators and microelectromechanical systems (MEMs). In view of their importance, the enthalpies of formation from binary oxide components at 25 degrees C, measured by high temperature oxide melt solution calorimetry of a set of alkali tantalates and niobates with perovskite-like structures, LiTaO3, LiNbO3, NaTaO3, NaNbO3 and KNbO3, are reported to be -93.74 +/- 1.77, -93.44 +/- 1.48, -147.35 +/- 2.46, -141.63 +/- 2.27 and -207.12 +/- 1.74 kJ mol(-1) for LiTaO3, LiNbO3, NaTaO3, NaNbO3 and KNbO3, respectively. The surface energies of nanocrystalline perovskites of these alkali tantalates and niobates were experimentally determined for the first time by calorimetry. The energies of the hydrated surface are 1.04 +/- 0.34, 1.21 +/- 0.78, 1.58 +/- 0.29, 2.16 +/- 0.57 and 2.95 +/- 0.59 J m(-2) for LiTaO3, LiNbO3, NaTaO3, NaNbO3 and KNbO3, respectively. The stability of the lead-free perovskites of I-V type is discussed based on their tolerance factor and acid-base chemistry. The formation enthalpy becomes more exothermic (higher thermodynamic stability) and the surface energy increases (greater destabilization for a given particle size) with the increase in the ionic radius of the A-site cations (Li, Na and K) and with increase in the tolerance factor. These correlations provide key insights into how lead-free niobates and tantalates behave during synthesis and processing; i.e. they explain, for example, why KNbO3 and KTaO3 nanoparticles are thermodynamically more reactive than their Li and Na counterparts. This understanding will facilitate the development of optimized processing techniques and applications.

palavras-chave

WATER-ADSORPTION; SOLID-SOLUTIONS; 1ST-PRINCIPLES CALCULATION; DIELECTRIC-PROPERTIES; TITANATE PEROVSKITES; FORMATION ENTHALPIES; FORMATION ENERGIES; SURFACE ENERGIES; BARIUM-TITANATE; PHASE-STABILITY

categoria

Materials Science; Physics

autores

Sahu, SK; Zlotnik, S; Navrotsky, A; Vilarinho, PM

nossos autores

agradecimentos

Sulata K. Sahu and Alexandra Navrotsky acknowledge the U.S. Department of Energy, Office of Basic Energy Sciences, grant: DE-FG02-05ER15667 for financial support. Sebastian Zlotnik and Paula M. Vilarinho acknowledge FEDER funds via Programa Operacional Factores de Competitividade - COMPETE and National funds via FCT (Fundacao para a Ciencia e Tecnologia) within the Project CICECO - FCOMP-01-0124-FEDER-037271 (FCT PEst-C/CTM/LA0011/2013) and an individual FCT grant (SFRH/BD/67023/2009).

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".