Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes

resumo

With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1 M NaNO3 at (298.2 +/- 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. (C) 2016 Elsevier Inc. All rights reserved.

palavras-chave

INDUCED OXIDATIVE STRESS; RARE-EARTH COMPLEXES; GALLIC ACID; COSMO-RS; COORDINATION-COMPLEXES; PELTIPHYLLUM-PELTATUM; EQUILIBRIUM-CONSTANTS; LANTHANIDE COMPLEXES; STABILITY-CONSTANTS; ANTICANCER DRUGS

categoria

Biochemistry & Molecular Biology; Chemistry

autores

Taha, M; Khan, I; Coutinho, JAP

nossos autores

agradecimentos

This work was financed by national funding from Fundacao para a Ciencia e a Tecnologia (FCT, Portugal), European Union, QREN, FEDER and COMPETE for funding the CICECO (project PEst-C/CTM/LA0011/2013), QOPNA (project PEst-C/QUI/UI0062/2013) and LSRE/LCM (project PEst-C/EQB/LA0020/2013). M. Taha and I. Khan acknowledge FCT for the postdoctoral grants SFRH/BPD/78441/2011 and SFRH/BPD/76850/2011, respectively.

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".