P-Type Electronic Conduction in CeO(2)- and LaGaO(3)-Based Solid Electrolytes


Modifications of the e.m.f, and faradaic efficiency techniques, taking into account electrode polarization in the measuring cells, in combination with the use of electrodes having sufficiently high polarization resistances enable a precise determination of minor electronic contributions to the conductivity of solid electrolytes. These methods were used to determine the p-type conductivity of compositions based on La(Sr)Ga(Mg)O(3-delta)(LSGM) and Ce(Gd)O(2-delta) (CGO) at 900-1270 K. The oxygen ion transference numbers of these materials under oxygen/air gradient vary in the range 0.999-0.970, increasing with decreasing temperature. Substitution of 2 % gadolinium in Ce(0.80)Gd(0.2)O(2-delta) with praseodymium was found to increase the electron-hole conduction by 2.5 - 4 times. At temperatures above 700 K, both the partial oxygen ionic and p-type electronic conductivities of LaGaO(3)-based phases are higher than those in CGO. The electron-hole transport in LSGM tends to increase with the magnesium concentration, while the activation energy is essentially independent of composition. Electronic conduction in CGO and LSGM electrolytes was also found to be influenced by the ceramic microstructure.


Chemistry; Electrochemistry; Physics


Kharton, VV; Yaremchenko, AA; Viskup, AP; Figueiredo, FM; Shaulo, AL; Kovalevsky, AV; Naumovich, EN; Marques, FMB

nossos autores

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".