resumo
The design of paper products based on copper nanoparticles (NPs) is a challenge because of the intrinsic propensity of Cu to oxidize in contact with air. Here, a comparative study on the growth and chemical stability of Cu NPs in vegetable and bacterial cellulose is described for the first time. Furthermore, comparative studies were performed by using inorganic fillers of distinct dimensionality, Cu NPs and Cu nanowires (NWs), in both types of cellulose. Cu NWs were found to be more resistant to oxidation caused by prolonged air exposure than the Cu NPs. Notably, the cellulosic matrices behave differently for the growth or adsorption of the Cu nanofillers; bacterial cellulose fibers are the most efficient substrate to delay surface oxidation. The data support a role for bacterial cellulose in limiting the oxidation of Cu nanostructures that have been grown or blended in this type of matrix, hence opening up new perspectives for the development of electronic paper technologies that incorporate copper nanophases.
palavras-chave
NANOPARTICLES; OXIDATION; BACTERIAL; SILVER; NANOCOMPOSITES; SIZE; MEMBRANES; POLYMER
categoria
Chemistry
autores
Pinto, RJB; Neves, MC; Neto, CP; Trindade, T
nossos autores
Grupos
G1 - Materiais Porosos e Nanossistemas
G4 - Materiais Renováveis e Economia Circular
G5 - Materiais Biomiméticos, Biológicos e Vivos
agradecimentos
We thank the Portuguese Foundation for Science and Technology (FCT) for the following grants: SFRH/BD/45364/2008 (R. J. B. P) and SFRH/BPD/35046/2007 (M. C. N.). The authors acknowledge the FCT (Pest-C/CTM/LA0011/2011), the Fundo Social Europeu (FSE) and the Programa Operacional Potencial Humano (POPH) for funding. Microscopy analysis was supported by Rede Nacional de Microscopia Eletronica (RNME-Pole UA FCT) project REDE/1509/RME/2005.