Predicting Physico-Chemical Properties of Alkylated Naphthalenes with COSMO-RS

abstract

COSMO-RS, the Conductor-like Screening Model for Real Solvents, has been used to predict a set of basic partition coefficients of 22 (alkylated) naphthalenes. To validate the approach, methyl-, dimethyl-, and ethylnaphthalenes have been chosen, according to the availability of experimental data. Then, predictions have been extended to diisopropylnaphthalenes. Given the model's expected uncertainty intervals, COSMO-RS predictions of aqueous solubilities, (subcooled) vapor pressures, Henry's law constants, as well as octanol-water partition coefficients, are in agreement with available literature data. Simultaneous overestimation of aqueous solubilities and vapor pressures of comparable magnitude leads to partial error cancellation in the Henry's law constants. Based on physico-chemical property data obtained with COSMO-RS, the Mackay Level III fugacity model, a steady-state, non equilibrium, and regional-scale model, has been applied to exemplary evaluate the tendency of 2,6-diisopropylnaphthalene to migrate between media by modelling emissions to each individual medium and calculating the amount present at steady state.

keywords

AQUEOUS SOLUBILITY; SCREENING MODEL; REAL SOLVENTS; WATER; POLLUTANTS; CHEMICALS; FATE

subject category

Chemistry

authors

Schroder, B; Coutinho, JAP; Santos, LMNBF

our authors

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".