Electric field modification of magnetotransport in Ni thin films on (011) PMN-PT piezosubstrates

abstract

This study reports the magnetotransport and magnetic properties of 20 nm-thick polycrystalline Ni films deposited by magnetron sputtering on unpoled piezoelectric (011) [PbMg1/3Nb2/3O3](0.68)-[PbTiO3](0.32) (PMN-PT) substrates. The longitudinal magnetoresistance (MR) of the Ni films on (011) PMN-PT, measured at room temperature in the magnetic field range of -0.3T < mu H-0 < 0.3 T, is found to depend on the crystallographic direction and polarization state of piezosubstrate. Upon poling the PMN-PT substrate, which results in a transfer of strain to the Ni film, the MR value decreases by factor of 20 for the current along [100] of PMN-PT and slightly increases for the [01 (1) over bar] current direction. Simultaneously, a strong increase (decrease) in the field value, where the MR saturates, is observed for the [01 (1) over bar] ([100]) current direction. The anisotropic magnetoresistance is also strongly affected by the remanent strain induced by the electric field pulses applied to the PMN-PT in the non-linear regime revealing a large (132 mT) magnetic anisotropy field. Applying a critical electric field of 2.4 kV/cm, the anisotropy field value changes back to the original value, opening a path to voltage-tuned magnetic field sensor or storage devices. This strain mediated voltage control of the MR and its dependence on the crystallographic direction is correlated with the results of magnetization reversal measurements. (C) 2015 AIP Publishing LLC.

keywords

BIFEO3

subject category

Physics

authors

Tkach, A; Kehlberger, A; Buttner, F; Jakob, G; Eisebitt, S; Klaui, M

our authors

acknowledgements

This work was funded by the EU's 7th Framework Program IFOX (NMP3-LA-2010 246102), the Graduate School of Excellence MAINZ (GSC 266 Mainz), the German Science Foundation (DFG), and the ERC (2007-Stg 208162). A. Tkach also acknowledges funds by FEDER through Programa Operacional Factores de Competitividade-COMPETE, and national funds through FCT-Fundacao para a Ciencia e Tecnologia within CICECO project-FCOMP-01-0124-FEDER-037271 (FCT Ref. PEst-C/CTM/LA0011/2013) and independent researcher Grant No. IF/00602/2013.

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".