Mechanical, microstructural behaviour and modelling of dual phase steels under complex deformation paths

abstract

This paper aims to identify the mechanisms associated to the transient hardening behaviour of dual phase steels under strain path changes, and to capture the observed material behaviours with appropriate constitutive models. First, three DP steel sheets with different amounts of martensite were tested under monotonic and various strain path changes. Second, microstructural analysis of the materials before and after strain path change were performed by means of SEM, TEM, and EBSD. The contribution of texture evolution on the mechanical behaviour was also assessed using the visco-plastic self consistent (VPSC) polycrystal plasticity model. Transient hardening behaviour and permanent softening were observed in the tension tension tests for all the studied DP steels. These behaviours were explained by the development of strain gradients during the first load resulting from strain accommodation incompatibilities between the ferrite and martensite phases. For the purpose of describing the macroscopic material behaviours, the enhanced homogeneous anisotropic hardening (HAH) model (Barlat et al., 2014) integrated with the Yld2000-2d anisotropic yield function were adopted for constitutive modelling. The simulation results were discussed in view of the microstructure evolution. (C) 2016 Elsevier Ltd. All rights reserved.

keywords

ANISOTROPIC HARDENING MODEL; LOW-CARBON STEEL; STRAIN-PATH; SHEET METALS; PLASTICITY MODEL; ALUMINUM-ALLOY; LOADING PATHS; IF STEEL; PART II; EVOLUTION

subject category

Engineering; Materials Science; Mechanics

authors

Liao, J; Sousa, JA; Lopes, AB; Xue, X; Barlat, F; Pereira, AB

our authors

acknowledgements

This work is cofunded by FEDER funds through the Operational Programme for Competitiveness Factors - COMPETE and National Funds through the FCT - Foundation for Science and Technology of Portugal under the Project PTDC/EMS-TEC/0777/2012 and PTDC/EMS-TEC/2404/2012.

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".