abstract
The therapeutic effectiveness of a drug largely depends on its bioavailability, and thus ultimately on its aqueous solubility. Hydrotropes are compounds able to enhance the solubility of hydrophobic substances in aqueous media and therefore are extensively used in the formulation of drugs and personal care products. Recently, some ionic liquids were shown to display a strong ability to enhance the solubility of biomolecules through hydrotropy. In this work, the impact of the ionic liquid chemical structures and their concentration on the solubility of ibuprofen was evaluated and compared with the performance of conventional hydrotropes. The results obtained clearly evidence the exceptional capacity of ionic liquids to enhance the solubility of ibuprofen. [C(4)C(1)im][SCN] and [C(4)C(1)im][N(CN)(2)] seem to be the most promising ionic liquids for ibuprofen solubilisation, where an increase in the solubility of 60 -and 120-fold was observed with ionic liquid concentrations of circa 1 mol kg(-1), respectively. Dynamic light scattering and molecular dynamics simulations were used to investigate the mechanism of the IL-mediated drug solubility and the results obtained indicate that the structure of aqueous solutions of ionic liquids and the role it plays in the formation of ionic liquid-drug aggregates is the mechanism driving the hydrotropic dissolution.
keywords
ACTIVE PHARMACEUTICAL INGREDIENTS; ATOM FORCE-FIELD; AQUEOUS-SOLUTIONS; TEMPERATURE-DEPENDENCE; SODIUM-SALICYLATE; SOLUBILIZATION; NICOTINAMIDE; WATER; FORMS; DRUG
subject category
Chemistry; Physics
authors
Sintra, TE; Shimizu, K; Ventura, SPM; Shimizu, S; Lopes, JNC; Coutinho, JAP
our authors
Projects
CICECO - Aveiro Institute of Materials (UID/CTM/50011/2013)
Projeto de Investigação Exploratória: Sónia Patricia Marques Ventura (IF/00402/2015)
acknowledgements
This work was developed within the scope of the project CICECO - Aveiro Institute of Materials POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate, co-financed by FEDER under the PT2020 Partnership Agreement. The authors are grateful for financial support through FCT for the postdoctoral grant SFRH/BPD/94291/2013 of Karina Shimizu, project UID/QUI/00100/2013 and for the IF contract of S.P.M. Ventura reference IF/00402/2015.