abstract
Molecular modeling of diphenylalanine peptide nanotubes (FF PNT) is performed using PM3 method in HyperChem. The study focuses on the polar properties of FF PNT structures having different chiralities (L, D) and conformations (alpha-helix, beta-sheet). The results show that the optimized structures for L-PNT possess higher polarization in both conformations (0.023 C/m(2) - alpha, 0.04 C/m(2) - beta) compared with D-PNT (0.016 C/m(2) - alpha, 0.014 C/m(2) - beta). The water structures inside PNT are investigated, too. The hexagonal ice/water structures used for these models are analyzed in respect to the XRD data recently obtained.
subject category
Materials Science; Physics
authors
Bystrov, VS; Kopyl, SA; Zelenovskiy, P; Zhulyabina, OA; Tverdislov, VA; Salehli, F; Ghermani, NE; Shur, VY; Kholkin, AL
our authors
Groups
G2 - Photonic, Electronic and Magnetic Materials
G3 - Electrochemical Materials, Interfaces and Coatings
acknowledgements
The work was supported by RFBR (grant No. 15-01-04924) and by the joint project Portugal-Turkey TUBITAK/0006/2014 and #115F227. PZ thanks the grant of the President of the Russian Federation for young scientists (Contract 14.Y30.17.2294-MK) and the Government of the Russian Federation (Resolution 211, Contract 02.A03.21.0006) for the financial support.