The influence of processing parameters on morphology and granulometry of a wet-milled sol-gel glass powder

abstract

A quaternary bioactive sol-gel glass of high silica content was heat treated at different temperatures, and then wet ball milled under different balls-to-powder ratios. A total of sixteen experiments were performed to study in detail the effects of both experimental variables on the structure, morphology, particle size distributions and nitrogen adsorption isotherms. The balls-to-powder ratio exerts a tremendous influence on the final particle size distribution of the powders, while its effects on the pore volume and morphology are minimal. These structural features are mostly governed by the changes in calcination temperature. Therefore, understanding the specific roles of each experimental parameter is of paramount importance towards achieving optimum powders with the desired properties. This work sheds light on the importance of using a suitable combination of these two parameters for tuning the morphology and the granulometry of the sol-gel derived bioactive glass powders.

keywords

CALCINATION TEMPERATURE; PHOTOCATALYTIC ACTIVITY; PHASE-TRANSFORMATION; WEIGHT RATIO; BALL; MICROSTRUCTURE; PERFORMANCE; HYDROLYSIS; CERAMICS; SIZE

subject category

Materials Science

authors

Ben-Arfa, BAE; Salvado, IMM; Pullar, RC; Ferreira, JMF

our authors

acknowledgements

R.C. Pullar wishes to thank the FCT Grant IF/00681/2015 for supporting this work. B. A. E. Ben-Arfa thanks FCT grant BIONANOSCULP PTDC/EPH-PAT/6281/2014 for supporting him during this work. This work was developed in the scope of the project CICECO-Aveiro Institute of Materials (Ref. FCT UID /CTM /50011/2013), financed by national funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement.

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".