Effect of Fe2O3 doping on colour and mechanical properties of Y-TZP ceramics

abstract

Yttria-stabilized zirconia (Y-TZP) samples with different Fe concentrations were prepared aiming to study the effects of Fe2O3 doping on colour and mechanical properties. Since colour is an important optical property for jewellery and watchmaking, the investigation of colour in zirconia ceramics has a great scientific and technological interest. An investigation of the mechanical and optical properties, specifically the colour, was developed starting from commercial partially yttria-stabilized zirconia (Y-TZP) powders produced by Emulsion Detonation Synthesis (EDS). Within the strategies to get colours, the use of colouring oxides such as iron oxide (Fe2O3) was the chosen approach. The addition of specific ions into the ZrO2 matrix can be used to tune zirconia colour without compromising its outstanding mechanical properties. Doping with iron oxide has proved to be a suitable, reproducible and irreversible colouring mechanism, allowing the development of a chromatically beige stable material with respect to its use in different processing conditions such as different atmospheres and temperature ranges. XRD results suggested that iron ions dissolved into tetragonal zirconia phase are at interstitial positions since the unit-cell volume of the tetragonal zirconia increases with increasing iron content. The effect of dopant addition on the mechanical properties of Y-TZP ceramics was also assessed. Compared to the undoped samples, doped ones exhibit a similar Vickers hardness (> 1200 MPa) and biaxial flexural strength (> 1000 MPa). However, it was observed that Fe2O3 doping slightly decreased the fracture toughness of Y-TZP ceramics.

keywords

ZIRCONIA CERAMICS

subject category

Materials Science

authors

Holz, L; Macias, J; Vitorino, N; Fernandes, AJS; Costa, FM; Almeida, MM

our authors

acknowledgements

The authors acknowledge financial support from FCT, Portugal (project UID/CTM/50025/2013 and FCT ref. UID/CTM/50011/2013) financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".