Changing the magnetic states of an Fe/BaTiO(3)interface through crystal field effects controlled by strain


The search for better and inexpensive magnetoelectric materials is now commonplace in solid state physics. Intense coupling between technologically viable electric and magnetic properties, embedded in a single material, is still an attribute greatly pursued by the scientific community. Following this line of thought, using DFT, the study of a specific interface between the TiO(2)layer of BaTiO(3)and a monolayer of Fe atoms is presented, probing different uni-axial strain effects of the considered supercell. Depending on the strain, several different metastable magnetic states are predicted: a perfectly balanced antiferromagnetic state, an unbalanced ferrimagnetic state, a ferromagnetic state, and a non-magnetic state where each atom has its total magnetic moment quenched. Since these multiple magnetic states can be reversibly controlled by strain, under optimized conditions, this interface can switch from the ferromagnetic state (mu approximate to 2.2 mu(B)per Fe-atom) to the non-magnetic state (mu= 0 mu(B)per Fe-atom), enabling enticing prospects for technological applications.



subject category

Chemistry; Physics


Amorim, CO; Goncalves, JN; Amaral, JS; Amaral, VS

our authors


This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 and UIDP/50011/2020, financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. FCT is also acknowledged for grants SFRH/BD/93336/2013 (C. O. A.), SFRH/BPD/82059/2011 (J. N. G.), and IF/01089/2015 (J. S. A.).

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".