Local Piezoelectric Properties of Doped Biomolecular Crystals

abstract

Piezoelectricity is the ability of certain crystals to generate mechanical strain proportional to an external electric field. Though many biomolecular crystals contain polar molecules, they are frequently centrosymmetric, signifying that the dipole moments of constituent molecules cancel each other. However, piezoelectricity can be induced by stereospecific doping leading to symmetry reduction. Here, we applied piezoresponse force microscopy (PFM), highly sensitive to local piezoelectricity, to characterize (01 over bar 0) faces of a popular biomolecular material, alpha-glycine, doped with other amino acids such as L-alanine and L-threonine as well as co-doped with both. We show that, while apparent vertical piezoresponse is prone to parasitic electrostatic effects, shear piezoelectric activity is strongly affected by doping. Undoped alpha-glycine shows no shear piezoelectric response at all. The shear response of the L-alanine doped crystals is much larger than those of the L-threonine doped crystals and co-doped crystals. These observations are rationalized in terms of host-guest molecule interactions.

keywords

GLYCINE

subject category

Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter

authors

Kholkin, A; Alikin, D; Shur, V; Dishon, S; Ehre, D; Lubomirsky, I

our authors

acknowledgements

This work was supported by the collaborative program of the Israeli Ministry of Science with the Russian Foundation for Basic Research (RFBR), grant #3-16492, and directly by the RFBR (grant #19-52-06004 MNTI_a). The equipment of the Ural Center for Shared Use Modern Nanotechnology UrFU was used. A.K. acknowledges the Ministry of Science and Higher Education of the Russian Federation for the support under the project #075-15-2021-588 from 1.06.2021. The work was also developed within the scope of the project CICECO at the Aveiro Institute of Materials, refs. UIDB/50011/2020 and UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES. I.L. expresses his gratitude to the Estate of Olga Klein-Astrachan fund, grant #721977.

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".