Unravelling the Affinity of Alkali-Activated Fly Ash Cubic Foams towards Heavy Metals Sorption

abstract

In this work, alkali-activated fly ash-derived foams were produced at room temperature by direct foaming using aluminum powder. The 1 cm(3) foams (cubes) were then evaluated as adsorbents to extract heavy metals from aqueous solutions. The foams' selectivity towards lead, cadmium, zinc, and copper ions was evaluated in single, binary, and multicomponent ionic solutions. In the single ion assays, the foams showed much higher affinity towards lead, compared to the other heavy metals; at 10 ppm, the removal efficiency reached 91.9% for lead, 83.2% for cadmium, 74.6% for copper, and 64.6% for zinc. The greater selectivity for lead was also seen in the binary tests. The results showed that the presence of zinc is detrimental to cadmium and copper sorption, while for lead it mainly affects the sorption rate, but not the ultimate removal efficiency. In the multicomponent assays, the removal efficiency for all the heavy metals was lower than the values seen in the single ion tests. However, the superior affinity for lead was preserved. This study decreases the existing knowledge gap regarding the potential of alkali-activated materials to act as heavy metals adsorbents under different scenarios.

keywords

METAKAOLIN BASED GEOPOLYMER; INORGANIC POLYMER; FACILE FABRICATION; EFFICIENT REMOVAL; ADSORPTION; SPHERES; GREEN; MONOLITHS; ADSORBENT; MICROSTRUCTURE

subject category

Chemistry; Materials Science; Metallurgy & Metallurgical Engineering; Physics

authors

Caetano, APF; Carvalheiras, J; Senff, L; Seabra, MP; Pullar, RC; Labrincha, JA; Novais, RM

our authors

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".