Selection of hydrotropes for enhancing the solubility of artemisinin in aqueous solutions

abstract

Artemisinin is an antimalarial substance very sparingly soluble in water. In the attempt to identify environmental-friendly and non-toxic aqueous-based solvents to extract it from Artemisia annua L., the solubility of artemisinin in aqueous solutions of different hydrotropes was measured at 303.2 K, for hydrotrope concen-trations up to 5 M. The ability of the studied hydrotropes for enhancing the artemisinin solubility increases in the following order: Na[N(CN)2] < Na[SCN] < [Chol][Van] < [Chol][Gal] < [N4,4,4,4]Cl < [Chol][Sal] < [P4,4,4,4]Cl < Na[Sal], with Na[Sal] allowing an increase in the solubility of 750 fold compared to pure water. The COSMO-RS model and experimental Kamlet-Taft solvatochromic parameters were applied to connect the solubility enhancement with solvent properties. At low hydrotrope concentration, the solubility increases with the decreasing of the difference between the Apolar Factors of the hydrotrope and artemisinin, while for higher hydrotrope concentration, the hydrogen-bond acceptor character of the hydrotrope seems to have an impact on the solubility enhancement. Even if some mechanistic understanding is still to unfold, quantitatively the empirical correlations of solubility enhancement with the hydrotrope concentration and the solvatochromic parameters show very high accuracy. In particular, 93% of the change on the artemisinin solubility enhancement could be explained using the hydrotrope concentration and two combined solvatochromic parameters (???? and ?????2) as explaining variables. Superscript/Subscript Available

keywords

HYDROGEN-BOND ACIDITY; IONIC LIQUIDS; SOLVATOCHROMIC PARAMETERS; ANTIMALARIAL-DRUG; BINARY-MIXTURES; PI-STAR; SOLVENTS; SCALE; WATER

subject category

Thermodynamics; Chemistry; Engineering

authors

Sales, I; Abranches, DO; Sintra, TE; Mattedi, S; Freire, MG; Coutinho, JAP; Pinho, SP

our authors

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".