Dynamics of ferroelectric nanodomains in BaTiO3 epitaxial thin films via piezoresponse force microscopy

abstract

Ferroelectric nanodomains were created in BaTiO3 thin films by applying a voltage to a sharp conducting tip of a scanning force microscope (SFM). The films were epitaxially grown on SrRuO3-covered (001)-oriented SrTiO3 substrates by a high-pressure sputtering. They appeared to be single-crystalline with the (001) crystallographic orientation relative to the substrate. Using the piezoresponse mode of the SFM to detect the out-of-plane film polarization, the domain sizes were measured as a function of the applied writing voltage and the pulse time. It was found that the time dependence of the domain diameter in a 60 nm thick BaTiO3 film deviates significantly from the logarithmic law observed earlier in Pb(Zr0.2Ti0.8)O-3 (PZT) films. At a given writing time, the domain size increases nonlinearly with increasing applied voltage, in contrast to the linear behavior reported earlier for PZT films and LiNbO3 single crystals. The dynamics of domain growth is analyzed theoretically taking into account the strong inhomogeneity of the external electric field in the film and the influence of the bottom electrode. It is shown that the observed writing time and voltage dependences of the domain size can be explained by the domain-wall creep in the presence of random-bond disorder.

keywords

DISORDERED MEDIA; DOMAINS; POLARIZATION

subject category

Science & Technology - Other Topics; Materials Science; Physics

authors

Pertsev, NA; Petraru, A; Kohlstedt, H; Waser, R; Bdikin, IK; Kiselev, D; Kholkin, AL

our authors

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".