Pure and (zinc or iron) doped titania powders prepared by sol-gel and used as photocatalyst


Pure and doped (zinc and iron) nanocrystalline titania powders were prepared by the sol gel route. Doping tends to change the existing crystalline phases and their degree of crystallinity, but particle size distribution and morphology of the particles are also affected. In the pure titania system, the main crystalline phase is anatase but rutile is also present. The doped (Zn and Fe) titania crystallizes only as anatase. The undoped titania shows a bimodal distribution of particles size: fine (20-40 nm) and coarse (300-500 nm) grains. The doped TiO(2) powder also exhibits a much more uniform particle size distribution, with all grains under 40 nm. The photocatalytic efficiency of suspended powders was tested on the decolouration of Orange II aqueous solutions under visible artificial light irradiation. The maximum decolouration reached by the pure TiO(2) was 81% at a rate of 3.6 x 10(-3) min(-1). Iron doping decreases the photocatalytic activity; the maximum dye degradation was only 43% at a rate of 1.3 x 10(-3) min(-1). On the contrary, the performance of Zn-doped titania was better, having a decolouration rate of 17.7 x 10(-3) min(-1). (C) 2011 Published by Elsevier Ltd and Techna Group S.r.l.



subject category

Materials Science


Seabra, MP; Salvado, IMM; Labrincha, JA

our authors

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".