resumo
There have been extensive and comprehensive reviews in the field of metal sulfide precipitation in the context of environmental remediation. However, these works have focused mainly on the removal of metals from aqueous solutions-usually, metal-contaminated effluents-with less emphasis on the precipitation process and on the end-products, frequently centering on metal removal efficiencies. Recently, there has been an increasing interest not only in the possible beneficial effects of these bioremediation strategies for metal-rich effluents but also on the formed precipitates. These metal sulfide materials are of special relevance in industry, due to their optical, electronic, and mechanical properties. Hence, identifying new routes for synthesizing these materials, as well as developing methodologies allowing for the control of the shape and size of particulates, is of environmental, economic, and practical importance. Multiple studies have shown proof-of-concept for the biological synthesis of inorganic metallic sulfide nanoparticles (NPs), resorting to varied organisms or cell components, though this information has scarcely been structured and compiled in a systematic manner. In this review, we overview the biological synthesis methodologies of nanosized metal sulfides and the advantages of these strategies when compared to more conventional chemical routes. Furthermore, we highlight the possibility of the use of numerous organisms for the synthesis of different metal sulfide NPs, with emphasis on sulfate-reducing bacteria (SRB). Finally, we put in perspective the potential of these methodologies in the emerging research areas of biohydrometallurgy and nanobiotechnology for the uptake of metals in the form of metal sulfide nanoparticles. A more complete understanding of the principles underlying the (bio)chemistry of formation of solids in these conditions may lead to the large-scale production of such metal sulfides, while simultaneously allowing an enhanced control over the size and shape of these biogenic nanomaterials.
palavras-chave
SULFATE-REDUCING BACTERIA; ACID-MINE DRAINAGE; ENGINEERED ESCHERICHIA-COLI; HEAVY-METAL REMOVAL; CADMIUM-SULFIDE; HYDROGEN-SULFIDE; WASTE-WATER; EXTRACELLULAR BIOSYNTHESIS; MICROBIAL SYNTHESIS; FUSARIUM-OXYSPORUM
categoria
Biotechnology & Applied Microbiology
autores
da Costa, JP; Girao, AV; Trindade, T; Costa, MC; Duarte, A; Rocha-Santos, T
nossos autores
Grupos
G1 - Materiais Porosos e Nanossistemas
G3 - Materiais Eletroquímicos, Interfaces e Revestimentos
agradecimentos
Funding by Fundacao para a Ciencia e a Tecnologia (FCT) through project PTDC/AAG-TEC/2721/2012 is acknowledged. A. V. Girao also thanks FCT for the Post-Doc grant (SFRH/BPD/66407/2009). We thank the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.