resumo
The creation of nanoscale organic-inorganic hybrid coatings with uniform architecture and high surface area, while maintaining their structural and morphological integrity, remains a significant challenge in the field. In this study, we present a novel solution, by utilizing Atomic/Molecular Layer Deposition (ALD/MLD) to coat patterned vertically aligned carbon nanotube micropillars with a conformal amorphous layer of Fe-NH2TP, which is a trivalent iron complex complexed with 2-amino terephthalate. The effectiveness of the coating is verified through multiple analytical techniques, including high-resolution transmission electron microscopy, scanning transmission electron microscopy, grazing incidence X-ray diffraction, and Fourier transform infrared spectroscopy. The Fe-NH2TP hybrid film exhibits hydrophobic properties, as confirmed by water contact angle measurements. Our findings contribute to advancing the understanding of how to grow high-quality one-dimensional materials using ALD/MLD and hold promise for future research in this area.
palavras-chave
METAL-ORGANIC FRAMEWORKS; DEPOSITION; GROWTH
categoria
Chemistry; Science & Technology - Other Topics; Materials Science; Physics
autores
Silva, RM; Rocha, J; Silva, RF
nossos autores
Grupos
G1 - Materiais Porosos e Nanossistemas
G3 - Materiais Eletroquímicos, Interfaces e Revestimentos
Projectos
CICECO - Aveiro Institute of Materials (UIDB/50011/2020)
CICECO - Aveiro Institute of Materials (UIDP/50011/2020)
Associated Laboratory CICECO-Aveiro Institute of Materials (LA/P/0006/2020)
agradecimentos
This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020, financed by national funds through the FCT/MCTES (PIDDAC). The authors acknowledge Dr R. Soares, MSc. M. Ferro and Dr S. Peripolli for assistance with the XRR/GIXRD and STEM/HRTEM measurements, respectively. Dr F. Figueira is acknowledged for the synthesized NH2-MIL 101 (Fe) powder sample, used as a reference.