A Computational Study of the Properties and Surface Interactions of Hydroxyapatite

abstract

Hydroxyapatite (HAP, Ca-10(PO4)(6)(OH)(2)) was studied from first principles approaches using the local density approximation (LDA) method in combination with various quantum-chemical (QM) and molecular mechanical (MM) methods from HypemChem 7.5/8.0. The data then were used for studies of HAP structures, and the interactions of HAP clusters with ionic species such as citrates. Computed data show that HAP can co-exist in different phases at room temperature, as both hexagonal and monoclinic. Special interest is connected with the ordered monoclinic structure, which could reveal piezoelectric properties. Obtained data on HAP interactions with citrates show the formation of differing HAP nanostructure forms, depending upon the concentration of citrate present.

subject category

Materials Science; Physics

authors

Bystrov, VS; Paramonova, EV; Costa, MEV; Santos, C; Almeida, M; Kopyl, S; Dekhtyar, Y; Bystrova, AV; Maevsky, EI; Pullar, RC; Kholkin, AL

our authors

acknowledgements

VB is thankful to FCT (Portugal) for the partial financial support through his grant SFRH/BPD/22230/2005. SK is thankful to FCT (Portugal) for grant PTDC/EME-MFE/105031/2008, and RCP would like to thank the Ciencia 2008 Program of the Portuguese Science and Technology Foundation (FCT). We also acknowledge FCT projects PTDC/CTM/73030/2006, REDE/1509/RME/2005 and Podi-Trodi EU-Brazil project for partial support.

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".